[^0][^1]*17-25 Find the reaction forces at the arm pivot in the global $X Y$ system for the brake of Problem 17-15.

17-26 Find the reaction forces at the arm pivot in the global $X Y$ system for the brake of Problem 17-16.
\dagger 17-27 A clutch is needed for an electric motor that transmits 20 kW at 1100 rpm . The clutch will attach directly to the motor housing faceplate and is to have the same housing diameter as the motor, which is 125 mm . The minimum radial clearance between the housing $O D$ and the clutch disk $O D$ is 5 mm . The clutch output shaft will have the same diameter as the motor shaft, which is 15 mm . Design a multiple disk clutch for this application. State all assumptions and design choices. Specify the clutch material, outside disk radius, inside disk radius, and the required actuation force.
17-28 A clutch is needed for an electric motor that transmits 25 hp at 800 rpm . The clutch will attach directly to the motor housing faceplate and is to have the same housing diameter as the motor, which is 5.5 in . The minimum radial clearance between the housing $O D$ and the clutch disk $O D$ is 0.25 in . The clutch output shaft will have the same diameter as the motor shaft, which is 0.625 in . Design a multiple disk clutch for this application. State all assumptions and design choices. Specify the clutch material, outside disk radius, inside disk radius, and the required actuation force.
*17-29 Find the torque that a dual-pad, caliper disc brake with pad angle of 60 deg can transmit if the outside and inside lining diameters are 160 mm and 90 mm , respectively, and the applied axial force is 3 kN . Assume uniform wear and $\mu=0.35$. Is the pressure on the lining acceptable? What lining materials would be suitable?

17-30 Repeat Problem 17-29 assuming uniform pressure.
*17-31 Design a dual-pad caliper disc brake to provide a braking force of 240 N at the periphery of a $750-\mathrm{mm}$-dia wheel that is rotating at 670 rpm . Use an inside radius to outside radius ratio of 0.577 . Assume uniform wear. State all assumptions and design choices. Specify the brake material, outside pad radius, inside pad radius, pad angle, and the required actuation force.

17-32 Repeat Problem 17-31 assuming uniform pressure.

17-33 An ultra-light solar racecar weighs 500 lb with driver. It has two 20 -in-dia bicycle wheels in front that are to have dual-pad caliper disk brakes on each wheel. The brakes must be capable of bringing the car to a stop in a distance of 150 feet from a speed of 45 mph . Neglecting aerodynamic and rolling resistance forces, design dual-pad caliper disc brakes for the car. Use an inside radius to outside radius ratio of 0.577 . Assume uniform wear. State all assumptions and design choices. Specify the brake material, outside pad radius, inside pad radius, pad angle, and the required actuation force.

17-34 Repeat Problem 17-33 assuming uniform pressure.

[^0]: * Answers to these problems are provided in Appendix D.

[^1]: \dagger Problem numbers in italics are design problems.

