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Shafts as Beams

The methods of Section 4.10 are directly applicable.  The only complicating factor is
the usual presence of steps in a shaft that change the cross-sectional properties along
its length.  The integration of the M / EI function becomes much more complicated due
to the fact that both  I and M are now functions of the dimension along the shaft-beam.
Rather than do an analytical integration as was done in Section 4.10 for the case of con-
stant I, we will use a numerical integration technique such as Simpson’s rule or the trap-
ezoidal rule to form the slope and deflection functions from the M / EI function.  This
will be demonstrated in an example. If the transverse loads and moment are time vary-
ing, then the absolute maximum magnitudes should be used to calculate the deflections.
The deflection function will depend on the loading and the beam boundary conditions,
i.e., whether simply supported, cantilevered, or overhung.

Shafts as Torsion Bars

The methods of Section 4.12 are directly applicable, particularly equation 4.24 (p. 178),
since the only practical shaft cross section is circular.  The angular deflection θ (in radians)
for a shaft of length l, shear modulus G, polar moment of inertia J, with torque T is

θ = Tl

GJ
a( . )10 9

from which we can form the expression for the torsional spring constant:

k
T GJ

l
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If the shaft is stepped, the changing cross sections complicate the torsional deflection
and spring constant calculation due to the changing polar moment of inertia J.

Any collection of adjacent, different-diameter  sections of shaft can be considered
as a set of springs in series since their deflections add and the torque passes through un-
changed. An effective spring constant or an effective J can be computed for any seg-
ment of shaft in order to find the relative deflection between its ends.  For a segment
of a shaft containing three sections of differing cross sections J1, J2, and J3 with corre-
sponding lengths l1, l2, l3, the total deflection is merely the sum of the deflections of
each section subjected to the same torque.  We assume that the material is consistent
throughout.
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Ex. 10-1
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  3.0
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d2 d3

Table  10-1 Comparison of Shaft Design Results from Examples 10-1 and 10-2
Minimum Diameters Give Nf = 2.5 at Each Point
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The effective spring constant keff of a three-segment stepped shaft is

1 1 1 1
10 9
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These expressions can be extended to any number of segments of a stepped shaft.

E X A M P L E  1 0 - 3

Designing a Stepped Shaft to Minimize Deflection

Problem Design the same shaft as in Example 10-2 to have a maximum bending
deflection of 0.002 in and a maximum angular deflection of 0.5° between
sheave and gear.

Given The loading is the same as in Example 10-2.  The peak torque is 146 lb-
in.  Figure 10-9 shows the distribution of the peak moment over the
shaft length.  The values are 65.6 lb-in at point B, 127.9 lb-in at point C,
and 18.3 lb-in at point D.

Assumptions The lengths will remain the same as in previous example, but diameters
can be changed to stiffen the shaft if necessary.  The material is the
same as in Example 10-2.

Solution See Figures 10-5 (p. 561), and 10-11 to 10-13.

1 The torsional deflection is found from equations 10.9.  The lengths of each segment
are (from Figure 10-5 on p. 561): AB = 1.5 in, BC = 3.5 in, and CD = 1.5 in.  The polar
area moments of inertia are first calculated for each segment of different diameter.
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and used in equation 10.9c (p. 567).
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This deflection is within the requested specification.

2 The moment function for this shaft was derived using singularity functions as
equation (j) in Example 10-1 (p. 562).  It must now be divided by the product of E
and the area moment of inertia I at each point along the shaft axis.  While E is
constant, the value of I changes with each diametral change in the stepped shaft so
we need to create a function for the variable I and singularity functions will do this.
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where IAB, IBC, ICD, and ID are the area moments of inertia of the respective step
diameters on the shaft and are equal to half of the respective J values in equation (a).

Figure 10-11a shows the moment function for this shaft as derived in the previous
examples, Figure 10-11b shows the EI function for the section diameters defined in
Example 10-2 from equation (c) and Figure 10-11c shows the M / EI function.

3 The bending deflection is found by integrating the M / EI function twice.

θ = +∫ M

EI
dz C d3 ( )

δ = + +∫∫ M

EI
dz C z C e3 4 ( )

4 The first integration of the M / EI function from equation (c) gives the beam slope
and the second integration gives the deflection function.  In previous discussions of
beam deflection (see Section 4.10 on p. 162 and Examples 4-4 to 4-7 on pp. 164 to
173) the cross section I of the beam was constant across its length.  In a stepped
shaft, I is a function of the shaft length.  This makes the analytical integration of the
M / EI function much more complicated.  A simpler approach is to numerically
integrate the function twice using a trapezoidal or Simpson’s rule.  This numerical
integration must be done for each coordinate direction to obtain the x and y compo-
nents of deflection.  These are then combined vectorially to get the deflection-
magnitude and phase-angle functions over the shaft length.

5 Since the shaft deflection is zero at z = 0, C4 = 0.  The other constant of integration
C3 can be determined numerically.  Figure 10-12a shows the beam slope in the y
direction as integrated by a trapezoidal rule, and also shows the corrected slope
function.  The integrated result is shifted up by the integration constant C3.  How-
ever, we do not know where the proper zero crossover is for this function, so we
cannot determine C3 from the beam-slope function.

6 The as-integrated deflection function in Figure 10-12b does not equal zero at the
second support.  Since the deflection is really zero there, the error in this integrated
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Numerical Integration of Moment Function and Finding the Integration Constant C3

X 104

shaft length (in)

(b)  EI function across shaft

0 2 4 6 8

(c)  Moment / E I

8

4

0
2

6

shaft length (in)

(a)  Moment magnitude

0 2 4 6 8

120

80

40

0

F I G U R E  1 0 - 1 1

Moment and Moment / EI 
Functions in Example 10-3

z

z

X 10–4

shaft length (in)

0 2 4 6 8
z

4

2

0
1

3

Ch 10 4ed Final 2/24/11, 9:11 PM569


