MACHINE DESIGN - An Integrated Approach

FIGURE P5-11

Beams and Beam Loadings for Problems 5-23 to 5-26 — see Table P5-2 for Data

- (a) Coulomb-Mohr theory
- (b) Modified-Mohr theory
- 5-31 Design a jack-stand in a tripod configuration that will support 2 tons of load with a safety factor of 3. Use SAE 1020 steel and minimize its weight.

Table	P5-2	Data for Problems 5-23 through 5-26						
		Use only data relevant to the particular problem. Lengths in m, forces in N, I in m ⁴ .						
Row	l	а	b	<i>w</i> *	F	Ι	С	E
а	1.00	0.40	0.60	200	500	2.85 <i>E</i> –08	2.00 <i>E</i> –02	steel
Ь	0.70	0.20	0.40	80	850	1.70 <i>E</i> –08	1.00 <i>E</i> –02	steel
С	0.30	0.10	0.20	500	450	4.70 <i>E</i> –09	1.25 <i>E</i> –02	steel
d	0.80	0.50	0.60	65	250	4.90 <i>E</i> –09	1.10 <i>E–</i> 02	steel
е	0.85	0.35	0.50	96	750	1.80 <i>E</i> –08	9.00 <i>E</i> –03	steel
f	0.50	0.18	0.40	450	950	1.17 <i>E</i> –08	1.00 <i>E</i> –02	steel
g	0.60	0.28	0.50	250	250	3.20 <i>E</i> –09	7.50 <i>E</i> –03	steel
h	0.20	0.10	0.13	400	500	4.00 <i>E</i> –09	5.00 <i>E</i> –03	alum
i	0.40	0.15	0.30	50	200	2.75 <i>E</i> –09	5.00 <i>E</i> –03	alum
j	0.20	0.10	0.15	150	80	6.50 <i>E</i> –10	5.50 <i>E</i> –03	alum
k	0.40	0.16	0.30	70	880	4.30 <i>E</i> –08	1.45 <i>E</i> –02	alum
1	0.90	0.25	0.80	90	600	4.20 <i>E</i> –08	7.50 <i>E</i> –03	alum
т	0.70	0.10	0.60	80	500	2.10 <i>E–</i> 08	6.50 <i>E–</i> 03	alum
п	0.85	0.15	0.70	60	120	7.90 <i>E</i> –09	1.00 <i>E</i> –02	alum

Problem numbers in *italics* are design problems.

* Note that w is a unit force of N/m

294