

FIGURE 4-1
A position vector in the plane - expressed in both global and local coordinates
the Pythagorean theorem:

$$
\begin{equation*}
R_{A}=\sqrt{R_{X}^{2}+R_{Y}^{2}} \tag{4.0a}
\end{equation*}
$$

and trigonometry:

$$
\theta=\arctan \left(\frac{R_{Y}}{R_{X}}\right)
$$

Equations 4.0a are shown in global coordinates but could as well be expressed in local coordinates.

Coordinate Transformation

It is often necessary to transform the coordinates of a point defined in one system to coordinates in another. If the system's origins are coincident as shown in Figure 4-1b and the required transformation is a rotation, it can be expressed in terms of the original coordinates and the signed angle δ between the coordinate systems. If the position of point A in Figure 4-1b is expressed in the local xy system as R_{x}, R_{y}, and it is desired to transform its coordinates to R_{X}, R_{Y} in the global $X Y$ system, the equations are:

$$
\begin{align*}
& R_{X}=R_{x} \cos \delta-R_{y} \sin \delta \\
& R_{Y}=R_{x} \sin \delta+R_{y} \cos \delta \tag{4.0b}
\end{align*}
$$

Displacement

Displacement of a point is the change in its position and can be defined as the straightline distance between the initial and final position of a point which has moved in the reference frame. Note that displacement is not necessarily the same as the path length which the point may have traveled to get from its initial to final position. Figure 4-2a (p. $178)$ shows a point in two positions, A and B. The curved line depicts the path along which the point traveled. The position vector $\mathbf{R}_{B A}$ defines the displacement of the point

